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!. INTRODUCTION 

It has been proposed that the strong interaction aspects of partide dynamics 

can be described by a Lagrangian field theory, Quantum Chromodynamics (QCD). 

The theory consists of colored quarks interacting via colored gluons. The original 

applications of the theory to short distance and light cone dom~nated processes 

have been extended to encompass various indusive processes1 (e""e- • n jets, 

pp...,. y"y -x and others) and maybe even certain exclusive processes2 (elastic form 

facton of hadrons). Renormalization group equations and general factorization 

properties were used to analyze those phenomena perturbatively. 

The applications of the same methods to study the large distance structure of 

the theory have not resulted in the emergence of a spectrum consisting of only 

color singlet bound states. 3 Various attempts have been made to incorporate non-

perturbative effects in QCD. Semidassical methods utilizing instantons and other 

configurations have important consequences for the chiral structure of QCD and 

may even result in an effective MIT like bag theory.4 The strong coupling aspects 

are emphasized by reformulating QCD in terms of a lattice gauge theory. Wilson5 

has proposed a four-dimensional eulcidean lattice version of QCD while Kogut and 

Susskin~ have studied a Hamiltonian formulation of QCD. Within those lattice 

theories bound state spectra have been calculated in a strong coupling expansion. 

This was done for pure Yang-Mills theory7 and for colored quarks interacting5,ll 

with fermions. These calculations are qualitatively successful for Mpects not 

involving chiral symmetry and seem to result in a string-like picture for excited 

bound states. Finally 't Hooft9 hM proposed the expansion, where the color 

group is taken to be SU(NJ, which leads to a pictorial simplification of the theory. 

The task of summing the surviving planar diagrams still seems formidable. 
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However if QCD confines, then for large Nc a valence quark picture emerges for 

the meson sector which will consist of an infinite number of stable 11adrons. The 

pure glueball sector will also contain stable hadrons decoupled from mesons.10 

Another approach to QCD was discussed by Bardeen and Pearson11 ho be referred 

to as !). It will be reviewed in section 11. Its structure is nontrivial in both the 

weak and strong coupling regimes. In this paper we discuss the calculation of 

hadron.ic glueball masses in the strong coupling regime. In section m we discuss the 

no11-perturbative longitudinal dynamics of the model. Bare hadrons are constructed 

from gauge potentials and "real" color degrees of freedom. in section IV, a 

perturbative strong coupling analysis of an effective field theory for bare hadrons 

is performed resulting in hadrons with a transverse motion. The calculations are 

discussed in section 'I. 

n. TRANSVERSE LATTICE VERSION OF QCD 

in this section we will review the transverse lattice version of QCD given in 1. 

First we will present the lattice action functional in terms of the link variables 

introduced by Wilso11o5 Then we will discuss the transformation to linearized 

degrees of freedom. Finally we wi.l! quantize the resulting linear theory. Since this 

paper is only concerned with the pure Yang-Mills sector of the theory we will not 

discuss here any of the problems associated with describing fermions 011 the lattice. 

If we use the matrix form of the gauge field 

(2.!) 

where the group generators are oormalized by the conditions 
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(2.2) 

(2.3) 

(2.4) 

Since there are only two dynamical gauge fields we choose a way of putting 

the theory on the lattice, gauge, and quantization procedure which exploits this 

fl&ct. First we dloose to leave the longitudinal coordinates t and z and the 

longitudinal gauge fields At and Az intact while we make the trii.I1Sverse 

coordinates discrete. Thus 

(2.5) 

where a is the lattice spacing and "x and ny are integers. The transverse gauge 

fields A and A are replaced by link variables U:> (t, z) which are associated 
J! 'I x_J.'Ill 

... ... A A ( ()) 

with the link between the lattice sites x1 and x 1 +Ill where a = 1,2 and a= a, or 

{0, a). The U's also depend on the longitudinal coordinates t and z. The U's may be 

interpreted as the phase factors 

(2.6) 
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We may now write down a discrete version of the QCO action which reproduces 

(2.3) in the naive continuum limit (ga + 0) with the expression {2.6) is substituted 

for the U's and the exponential is expanded oot in powers of a. viz. 

(2.7} 

where JJ, v = 0,3 and a,S = 1,2. The (longitudinal) covariant derivative of the link 

variables is given by 

(2.!) 

except to replace integrals by sums. The action for the purely transverse gauge 

mixed term involving olJ u is the simplest local interaction which reproduces the 

corresponding mixed term in the continuum. Most importantly the lattice action 

(2.7) remains gauge invariant under the restriction of the original gauge groop to 

the lattice. We can use this gauge invariance. to completely eliminate the 



li.lht..CO!'ie li,I<A\Jie (A_: (A0 - 0) witil light .com: quantization 

h:m~t .. :(x0 .. liO tMt l:leoome~~ ~a par<Ametric field which may be 

elimiMted by iU ~tiom of c:omtri.int in fii!?IO!" of a oonloal Coulomb 

int«acticn. in this respect tile trl!iltment at each uamverse lattice site is tile 

seme u tile di~ion of two dimemicnal QCD givan by severlll.i autllors.
12 

Were we are IISil1ll,l the H«mitian form of 

Cllfrent l_ is given by 

" 

(2.10) 

(2.W 

which contain no "time00 derivatives <I .. :41 /3T: and so can be solved for in terms 

of J_ without upsettilli oor subsequent quantization. Eiimillatilli A+ by (2.11) gives 

1111'1 effective llction which only depends on the U's. 

_.,_ 

) 

I -·L I - -·, + dJt ._:;! l! -X 
~~. 

!1'1 order for tilis action to give tile IISI.Iil.l QCD action ill tile continuum it wu 

nec:usary to usume tlllAt tile matric:e~~IJ have tile form 

liO that over smlll.il regioN of S>paCe IJ can be expanded in a Taylor series. (This is 

tile same u tile "spill wave00 expaNioo ~~Sed at low temperature in statisticlll.i 

mechanic. m 1 it wu incorrectly stated tMt in order for tile expamioo to be vlll.iid 

it wu nece~~sary tor U to develop a vacuum expectaticll vlll.iue. It is actl.lll.lly only 

nec:~ that over any small region of tramverse S>pace tMt '!he diUermces 

between IJ's be small.) Thus in particular we are assumilli a functional meuure for 

U which restricts it to tile space of unitary matrices. There are several reasem 

why this is not tile correct choice if we wish to describe physic correctly. The 

first and most mundane is that there is no compellilli reu011 for finite values of the 

Janke spacing a to use this meiliSIIre. Any measure which presenre~~ tile remall1illi 

gauge irwariance under gauge tramformatiom which are global ill tile lOiliitudinal 

coordinates t and z (i.e. a global SU(n) associated with each vertex of tile 

traMvene lattice) is a priori a Sl.litable candidate. The correct measure can only 

be determined by a relll.i 5pace reoormalization groop analysis but might take the 

form 
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(2.14) 

where U is allowed to be a complex general matrix, and dU is ill1 unrestricted 

measure. This potential, V, may depend on the lattice spacing, a, and the 

invariants, v} U and det{U). Put simply the variables of a lattice theory can never 

describe the '..!nderlying contim .. u.Am theory exactly but are supposed to represent, in 

an aggregate way, the nearby degrees of freedom of the continuum. theory. If the 

microscopic variables satisfy a coMtraint the new aggregate may oot, and we may 

wish to choose a linear variable to describe the average behavior of a collection of 

oon.iinear (i.e. unitary) variables. A more rigorous argument for the above 

sta~tement comes from the, oow exactly known, 13 behavior of the nonlinear (O(n)) 

a-model in two dimensions. The local degrees of freedom are oon.iinear, i.e. satisfy 

a constraint, and in greater than two dimensions the field would develop a vacuum 

expectation value and the spectrum would consist of (n-1) massless Goldstone 

bosons. in two dimensions the partide structure of the theory contaiM (n) massive 

scalars transforming under a linear realization of the symmetry group. Partide 

structure is inherently a large distance property and thus depends on the correct 

aggregate variables and not directly on the microscopic variables. Any physical 

description of the theory in terms of the underlying nonlinear degrees of freedom 

m~JSt be highly nonperturbative, but it is possible to achieve a much simpler 

description of the physics with an eUective action in terms of explicitly linear 

variables and their interactions. For large n the form of the effective action for 

the O(n) nonlinear a-model can be constructed explicitly. 14 In the action (2.12) the 

kinetic energy terms for U are identical to the action for an SU(n) 0 SU(n) 

oonlinear a-model defined at each link of the transverse lattice. If the other two 

terms of the lattice action which couple these e~-model $)!Stems together do oot 

modify the above cond~JSioM then the pl'lysically correct variables would ~ some 

linear variables to replace the U's as in (2.14). U we knew the exact behavior of 

the SU(n) x SU(n) a-model we could rewrite the action (2.12) in terml! of linear 

variables without approximation. As we don't, we adopt the iiMiltZ (2.14) with il 

minimal set of operators induded in V. The coefficients will lla.ve to remain as 

free pili"ai'lleters to be fit to the desired spectrum and be eventually determined 

throogh the continuum light analysis. It is useful to introduce the scalar field 

I 
i 

t 2 
+ ~tr(M M) + det(M) .. h.c.l .. ••• • (2.16) 

Since in later chapters we will make use of the large N expaMion only the first two 

terms in (2.16) will play any role in our qu.antitatille analysis. Thi.!S we can write 

the action in terms of M as 



In this version of the action M is a full n " n complex matrix of fields. 

We hawe discussed in some length the reasom why we have cl!<osen the form 

(2.1 n for the action of the theory. In return for a more physical starting point for 

exist an exact tramformation to an effective linear theory derivable by 

reoorm<i.lization groop analysis but hawe not carried this oot. The remaining task of 

this section is to quantize the action (2.17) in the light-cone. This is standard0 

ollllld presents no new difficulties. The Hamiltonian corresponding to (2.17) is given 

(2.U\) 

(2.19) 

l = [ ~.l (2.20) 

In the subsequent sectiom of this paper we will study the spectrum of the 

mass operator 1.1 
2 = 2P"'P· by diagol'lalizing it in the space ge~rated by the 

decomposition (2.19) when limited to states containing few particles. 

m. LONC:ITUOZNAL DYNAMICS 

effective action of the previous section. Since the full theory cannot be solved -

!leelc a practical and physically motivated approximation scheme. The prillcipai 

ingredients of the scheme we propose are I) a perturbatiwe expamim in the terms 

in H respomib!e for tramverse motion on the lattice, 2) a perturbative expamim in 

the non.linearities introduced by the effective potential for the !Ink me!!MS, 3) a 

topological expansion in the non-planarities of link me91M interactim91. The 

longitudinal free Iiili< meson dynamics and the longitudinal coulomb pGtential will 

be treated exactly. Although we performed a nonperturbative step by ~~~~~ 

from the original gluoni<: degrees of freedom to the link mesms we hawe !lOt yet 

constructed hadrons. m this section we shall study the tramformation from the 

link meson gloons to intermediate hadronic degrees of freedom, the bai-e hadrons. 

This tramformation is characterized by a single parameter ollllld may have 

accordingly weak, strmg or intermediate coupling features. 

We stsrt by showing how confi~~ement arises in this approximatim a a 

cmsequeoce of both symmetry and energetics: Using the transverse l~attice ollllld the 

light-cone gauge, the gloon dynamics have been separated into link ~ ollllld 



sheet via coolomb potentials which are imtantan~ a~~d confined to the given 

sheet. All states oil finite energy iillre singlets with respect to color rotiilltiom at 

billdi!'13 oil the IIIII< me$0ns. The bare Hamiltollia~~ which goverm the longitudilllll 

dyMmia oil the Iilli< m~ may be written il.ll 

) 

part oil the interaction a~~d 110t tho:se parts which produce or a~~nihilate pairs. Usi!'13 

the eJ~tpamlon of M into plane wave creation a~~d annihilation operators H
0 

may be 

rewritten 

-IJ.. 

In J(q) pair operators have been dropped. The coolomb interaction represents a 

momentum U<lll$1er q from one Hill< to a110tller with a p!'opagator The 

llntfllral is infrared divergent when q = 0 and this divergence is r~iJlated by a 

p!'illcipal value p!'<escription. It may be shown that the properties of color singlet 

states are independent of the way ill which these infrared divergences are 

r~iJlated. 

By comtruction H0 conserves the 111.1mber oit lilll<:s or a~~ti.li.nks. The 

total longitudinal momentum and the groop repre:sentatioo at each vertex, although 

we only comider states which are color singlets ilt each vertu. The simplest 

nontrivial sector of H0 consists of one Hill< and one a~~tilink meson between the 

same pair of vertices. Such states are created by the action of A~JI~a on the 

ground state. The only way to make a group singlet at both ends from thh operator 

is to take the trace of til<!! matrix product. TilliS we consider the state 



<I!' IQ> = 2P6(P- Q) 

$(x') (x + x•)((l - :d + (I - x')) 
lilxx'it l - x)(l - x') 

(.3.6) 

(3.1) 

(3.8) 

().Ill) 

11"1 the first term on the right-hand side the quantity in brackets is the renormalized 

man. This equation differs from the bound state equation obtained in the 't Hooft 

modei 12 in two respects. First the current vertex of a boson introduces the 

additional spin factor (ux'l<0-xl+0-x'))/(4/u10-x)O-x')) and second there is M 

overall factor of two since the links are bound by two c<NJomb potentials, one at 

each end. 

one can recognize some qualitative properties of the solutions. Since the equation 

is invariant under x++{l-:10:) with <P(x) + ±¢0-x), we may dassify states as being 

even or odd with respect to this symmetry. t(x) will have power behavior near 

x + 0, or 1. If we suppose t(x) + x11 near ll: + ()we obtain the consistency condition 

from the requirement that the leading singularity in x vanish. That the integral to 

converge at both ends requires -Ill < B < l!.. '11 8 > ll!, the integral appro~~eha a 

finite limit independent of x as x + 0 so there is oo sol11tion. l!'erlormi113 the 

integral gives the condition on I! 

(3.12) 

are oo solutions for negative 

hadron is massive. Fer the limiti113 case ,} = 8 = ll, t(x) = l fails to be a solution 

and the bo~.Dnd state m~W> remains finite. ThiiS at the we hadron approximation, 



~t~uebal!s are inherently heavier than usual qq mesoN. One could abo note that the 

Hme feature holds in the strong coupling limit on the Wilson lattice and is a 

tile negative solution for a. For highly excited states where the end point behavior 

ill unimportant and this equation is effectively identical to the 't Hooh equation 

except for the previously mentioned factor of two, thus if one relates these ba.re 

hadroN to the spinless daughters of the Pomeroo trajectory, the pomero'l'a's 

trajectory would have half tile slope of the "usual" partide trajectories. The 

parameter 11 determines the features of bare hadrons. for small II they are 

stron~t~y bound states while for !l near 12 they are weakly bound systems well 

described by two link mesons. The physical hadri)N wiU eventually be labeled by a 

definite s. 
In order to proceed with our program, we need to know tile eigenvalues ill!ld 

eigenfunctions for tile bound states In the two link mesons sector. A numerical 

procedw-e allows us to compute accurate values for tile eigenvalues il.l'ld 

eigenfunctioN ~x). In particular, we Cl)i'ISider as a basis set of functions 

(3.B) 

where I" /11.) is il.l'l nth order polynomial in x which is either even or odd under 

x-(1 - x). If tile P n are chl)sen as tile appropriately normalized and scaled Jacobi 

polynomials the •n's prl)vide an orthonormal basis. One may then diagona!ize the 

finite dimensional matrix H = < m,n n>. The eigenvalues provide estimates 

tl) tile true eigenvalues which conver11e rapidly as tile order of tile matrix is 
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!:luis also provide ccmverging estimates to the wave functiOIIS. The evaluation of 

the matrix elements can be performed illllalytkally. fint the polynomials Me 

expanded as power series in (xU - x))n or U - 2xl<xU - Jd)n and then the integrals 

are performed using the identity 

(3.14) 

The convergence of <ll{x) at the end points is only algebraic due to the presence of 

subdominant singularities. As these singularities are weal< (.rx 8• 11n(x)}, tile 

convergence is nevertheless rapid. However, iJ we require higher derivatives of 

~ (x), the method would filii to converge. In all subsequent applications tile matrix 

elements of 4> which are needed Me not highly sensitive to tile end point behavior 

so this is not a restriction. 

S = 0.1. for fixed II, 

large n. 

Returning to tile whole lattice theory, the spectrum of 

sector consists of a set of coulomb bound states which may be labelled by il 

transverse coordinate i?i, a polarization a ='X, y indicatinl£ the orientation of tile 

bound state with respect to ii, a quantum number n indicatinl£ tile excitatil)n of the 

state, and a total longitudinal ml)mEmtum 1". We may construct from this basis, 

states which are eigenstates of tril.l'lsverse momentum, but there would be oo 

dependence of tile energy on transverse momentum because of tile local llilture of 

This unphysical restrictil)n we wm approximately remove by tile perturbiitive 

treatment of the remaining terms in H. To dl) so we must introduce the four ~y 
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There are severii.IJ distinct ways to place four links on the lattice so that group 

singlets may be formed at every vertex. These are indicated in Fig. 2. The fact 

that 11.111 the states should be color singlet at each transverse site leads to 

difficulties in defining the gluon state at each transverse site leads to 

difficulties in defining the gluon state in the limit "'; this is like the baryon 

problem for quarks and thw we do oot disci!SS in this work three link meson states, 

etc. For the open boxes s
1
,
2 

there is ollly one way of forming a groop singlet 

111fhich is to trace the group indices around the box. Proceeding as in the two body 

with the oormll.lllz;mtion condition 

Applying H
0 

and projecting out momentum components leads to the bound state 

Ol!qll!lhtion 

When fOil!' links impinge on a vertex there are two ways to make a group singlet. 

For example 0 2 could be drawn in the two ways shown in Fig. 3. It turns out that 

for large N (the number of colors) these are the correct eigenstates, in group space, 

of H0 with II> a true four body bound state and 12 >two independent two body 

bound states. For generii.IJ N we mwt be more careful. The two orthogooll.ll 

in the limit N ... "' neglecting oollleading terms one obtaim the. two lliiCitiUpled 

~tiom 



The equation for 11 > is identical to the equation for the B configurations. The 

equation for 12> decouples the variables 

independent two body states. For theE configurations, similar results are found. 

H we adopt the approximation of keeping only the leading contribution in the 

UN expansion all of the possible configurations of four links on the lattice are 

described by the same bound state equation, or reduce to two independent two body 

bound states. As we shall see later in the same approximation only the four body 

bound states will contribute to the perturbative expansion of the transverse 

dynamics. 

body equation as well. In particular the consistency condition that the most 

slngll!ar power CMCel when each of the x. + 0 requires that ¢( ••• x .••• ) + x~ as x .... 0, 
I I I I 

where 8 is the same as given in Eq. (3.12). The wave functions may also be 

dusified <According to their symmetry under exchanges of various indices since the 

bound state equation is invariant under cydic permutations of the four variables or 

the reverse of their order. This is the symmetry of the dihedral group 0 4 whidl has 

five irreducible representations foil!" of whkh <~re one dimensional md one of which 

is t'M) dimensional. ThiiS the spectrum will be characterized by five independent 

trajectories one of which will be populated by doublets. The WKB approximation to 

bound state equation is ril!lated to the spectrum of normal modes of <1 )-simplex. 

Asymptotically the density of states only depends on the volume and dimensionality 
J 

of the region <Ind. behaves u n<M2),. (M2) u M2 + .. , or behaves rouglliy u 

The solutions of the bound state equation may be computed approximately 

just as in the t'M) body cue by constructing a variational basis 

u.:m 

where x4 = I - x 1 - x2 - :~~: 3, and the IF'~ are chosen as linearly independent 

polynomials In the foil!" variables which transform irreducibly with representation 01 

under the group They <Are orthogonal with respect to a, but it is oot 

p!lll'ticulariy \!Seful to require them to be orthogonal with respect to n since this is 

easily dealt with in the final numerical diagonalization. The eigenvalue equation is 

then cast into the form of a finite dimensional matrix eigenvalue problem in e<Ach 

sector separately by working out the necessary integrals analytically. This p!lll't of 

the calculation was greatly facilitated by the algebraic manipul<Ation progrilm 

MACSYMA. The resulting solutions to the matrix problems provide estimates to 

the muses md wave functions u before. The details of this calculation hi!Jve been 

Patterns of the radial excitations are now presented for our rwmerical 

calculations. The ground state energies of the vario\!S sectors (including the even 

and odd two-body sector) are plotted u a function of S in fig. 4. Note that all 

ground st<Ate energies tend to some finite fixed vali!e u S ... 0. In p!lll'ticular the 

smallest two-body eigenvalue approaches ::: w2 /2; the symmetric 4-link meson AA 

seems to have a lower limiting value than the odd 2-iink meson st<Ate. In fig. ' 

mother look at the spectroscopy of bare hadrons is given. Ail the results can be 

spirit of the approximation scheme one wmts to explore the ~ences of 

truncating the link mesons sector <It some small number and at a latter stage clled« 

that indeed such <An expansion is convergent. By now eoough inform<~tion about the 

bare hadrons has been accumulated )100 one may proceed to evaluate the full 

Hamiltonian in the Hilbert st<lte of bare hlldrom. 



!\', TRANSVERSE DYNAMICS 

The bare hlMllrOM constructed in Sec. III from link mesoN with coulomb 

bindifll are static on the transverse lattice. In the full Hamiltonian there are 

lid<litiond terms which generate nearest neighbor residual couplings ~li11g me 

v~arious bare hadron states to move along the transverse lattice. They also breai< 

the CCNI!ll'1l&tion of lillie meson ooml.!er miring variOU$ n-!ink meson states. In 

pi!.fticular, our calculation Ailvolves the mill.ing of t\\!O and four body bare hadron 

1tates. Thilll eftective fidd theory of bare hadrOM is treated illS a strong coupling 

penurba tion expansion. 

The various residual couplings can be identified by examining the full 

Hamiltonian governing the motion of the system. These terms are generated by the 

COI.IIOO'il:l interaction, the magnetic interaction, and local potential interactioN. 

The coulomb terms are identified by exp;allding the current-current inter

!11Ct.ioo, vee, in terms of creation Mel Ulllihilation operators. We obtil!ln 

(4.2) 

In Fig. 6 we show the various vertices generated by this interaction, figs. 6(a) and 

(b) show the coulomb scattering vertice$, already used in the longitudinal dynamics 

calculations, which correspond to the terms 

The new vertices, Figs. 6(c) and (d), describe coulomb production and annihilation 

and are given by 

The transverse magnetic term, which we call the oon-1~ box, ai$CIJ gives 

rise to scattering Mel proo11ction terms illS shown in Figs. ?(a) and (!»). The 

Mel the production term (l"ig. 7(b)) is 



As, ooted in Section II, the linearization of the link meson degrees of freedom 

ill only consistent if we add local potential terms to the effective Hamiltonian. 

ue identical to those of the oon-local box (replace gNI.i:'l by gi.B). All the vertices 

ue written with a normalization appropriate for direct matrix dements between 

the oormalized wave functions <!l<xp••••xn). 

Our purpose is eventually to diagona.lize the full Hamiltonian in a finite basis 

of bare Mdrons. To this end we must calculate all the matrix dements connecting 

the wuious bare mesons which are given in terms of wave functions of the form 

N 
where l xi" I 

hod 

Thus we wish to clllculate analytically the various matrix dements of operators 

appeuing in the Hamiltonian in this power basis. 

The coulomb scattering matrix elements have lllready been calculated in Eq. 

u.un in addition to the kinetic energy. These interactions do not change the link 

IMSOI1 number. &til loclll and oonlocal box scattering will have the same 

structure. let us discuss in detail tile oonlocal box case, which involves link 

mesons on four different sites. This interacltion mixes the link meson number two 

imd four sectors enabling the bare hadrons to move on the lattice. We note that a 

b!\re hadron containing two link mesons can move only via a second order transition 

through a four link meson state. The second effect of the coupling is to couple four 

link meson sti'ltes with different "polarization" configurations. Thus four link 

magnetic term is shown in fig. 8, the process is denoted by BH, 1'2'3'16 14, Uor 

generality the number of spectators has been increased toN- U which is given by 

J 

6 ••• 

II , 
(u ') I (y' 

I 

r!6 1 • 61• • 62• .. 6 3• ... nr<Y2 •Y 2• ... ll ••• r!yN •Y ~/ .. u 

r(Sl + Y2 + ••• yN + !!1' + S2' + B3'+Y2' + ••• y N'+ N} 

' N 

(4.6) 

All other matrix elements are calculated in an analogous manner. The (nonllocilll 

box scattering relates two link meson states in the four link mesons number four 

sector. It is represented by Fig. 9 and its villlue is 
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(81'+1!£+ B1 +ll 2 +!lr<e3•+ 8:3+0 •• .r(I!N'+IlN+ll 

r(s1• +II£+ ••• + s 111• + B I + ••• 13111 + N-1) 

I r<a 1• + l'.)r(B£ + Y,)f(B I + Y.)f(l! 2 + Y.) 

i r<s 1• .. a2'+llr(l! 1 .. a2 .. u 

" 

(4.7) 

T'llro other terms are induced by the current.oeurrent interaction. They are, 

respectively, the Coulomb annihilation term which is shown in Fig. 10. It relates 

states in the !ink meson foor sector. The reason it does not appear in the link 

meson two sector is that it contains a colored gluon as the intermediate state in 

that case. It is given by 

I r(I3 1'+Bz'+131 +13z+llr(133'+8 3 +!l ••• r(s 111'+13 111 +1) 

i r!B 1'+13 1 + ••• a 111•+a 111 +N-U 

r<a 1 .. Y..>r<s 2 .. lll>r<S 1' .. Y..>r<s 2• .. l»l 

ru3 1 .a 2 .. zma1• .. a2• ... :z> " 

" 

Note that this term is nonzero only between states that have tile same parity under 

an exchange u1 The last matrix element needed is the coulomb 

production matrix element. It relates the t'llro and foor link meson sectors, as 

shown in Fig. H. it is given by 

I HS 1• .. s 1 +U-.r<s 111• .. s 111 +U (y
1
.y

2
)r(r

1
+Y..)r(y

2
+Y..) 

l fU1 ..... SN + !1 1• .. r1 +Y 2 +!! 2• ..... i'!N1 + Nl (r 1 + r2Xr1 +Yz .,.!) 

ftll1'+llllr!y1 +Y:z+Sz+ 8.,_'+1My1 +-r:z+2!1:z'+l> 

... ur<a.,: .. v 1 .. r 2 .. ~ > 
(4.9) 
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All matrix elements induced by the transverse current...::urrent interaction have not 

been multiplied by the coulomb coupling constant <l·cN)/TKa2 
which is set to be 

one. This coupling actually sets the mass scale of the problem. We have 

accumulated by now ail the necessary information to calculate the masses of the 

gluebails. Having allowed the bare hadrons to move it would thus be natural to 

form a basis of transverse momentum eigenfunctions: 

and calculate the Hamiltonian in this basis. We have constructed the matrix for a 

general along the lines described in this section. The full rMtrix is given in _ 

Before turning to the actual computation of the hadron masses, we note that 

although we have restricted OW' discussion to link meson number not la.rger than 

four it is obvious that we have by now all the machinery necessary to deal with any 

link meson number. All one needs i:s to solve the n-link meson bare hadron wave 

function equation by tile same techniques used for the four body wave function lind 

the11 set up the Hamiltonian as done above. The number of terms increases rillpidly 

of cOW'se, but the calculations are strilliglltforward. This scheme b based on the 

proposition that the perturbation in the link meson number is indeed reasonable lind 

provides a co11vergent procedure; this wi.ll be tested by the calculations. 
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V. CALCULATIONS 

The theory iM formulated comists of three parameters (incluo:!ing an overaU 

~~Cal e) and an ul"li<nown function (the potential in the linear representation). This is 

a consequence of the theory being treated in a non-covariant gauge and witll a Mil

covariant cut-oU. The relation between parameters fixed by l..oreru: invariance can 

ol\iy be recovered in tile continuum limit. The fact that we !lave modified tile 

tlleory for a finite lattice spacing WiM discussed in detail in Section II. Tllis left us 

witll the ul"li<oown potential function. 

Wllat we propose to clleck is tllat we have chosen relevant degrees of freedom 

in terms of which a tractable scheme to calculating hadron mii.Sses can be 

described. At our present state of knowledge tllis would require a parameter 

fitting to miMses of known particles. We thus limit ourselves to describing features 

ot this scheme. 

The parameters are: 

Ul C,/i.CN)/11i. Chosen to be one dW"ing tile calculations, it sets tile scale of 

Mre lladron masses. 

(2) y "'2 (or IH--The ffiii.Ss of the Jil"li< meson (tile edge point behavior of the n

link meson wave function). In the non-linear a-model with O{N) symmetry this 

mass was actually generated dynamically. One would expect that in a covariant 

formulation there should be ol\iy one hadronic mass scale. The value of rJ controls 

the nature of tile longitudinal dynamics. large (small) S corresponds to wealdy 

(stroogly) bound link mesons. 

(J) gNI..!~-The coupling of the ool\iocal box, in tile continuum theory, it is 

essentially the gauge field self-coupling, g2• For a fixed transverse lattice 

separation, a, it should be related t~ ~,?·. However in this calculation we treat it iM 

a free parameter. g~I.I~/{AE(3)), where LIE(B) are Mre lladron energy splitting 

(which are a function of B), is essentially the expansion parameter of tile effective 

b&re hadron Hamiltonian. 

containing all of which are in principle determined dynamically and c::alculable 

from g2. We however do oot koow, at tile moment, how to perform liOCh a 

calculation and we thus pick one term-the local box interaction and treat the 

coupling gi..B as another free parameter. 

Fixing three parameters one must next clloose tile basis of states and 

truncate them. In the calculations reported here we !lave chosen .3 even and J odd 

states in the link meson number two sector to eacll such classification. There 

correspond two possible ~polarization" states (Fig. 2). In the fOUR' link meson 

sector, one state was chosen from eacll one-dimensional representation. There are 

foW" such representatiom (Al, A'J., IU, B2) and to eocll correspond Ul different 

"polarization" states (Fig. 2). two excitations were picked from the twll)o

dirnemion<l.! representation E. fo eacll there correspond I states (IE does not 

contain el, e2 states). All togetller the bii.Sis contained 12..40 .. 32 = $4 bare lladron 

states. The states were chosen by their energy ordering in tile mass spectrum of 

three of the five representations of 

Taking the symmetric and antisymmetric combinations of even two body 



!Ab" 

The odd two-body wave function can be placed in a doublet to i.orm the two-

dimeNional IE representation 

&th the A2 and Bl representations are absent from the link melllon oomber two 

sector. Ill order to appreciate this fact let w; consider a spin f. particle on a 

ti'MSVE!II'SE! lattice. (These results are valid also for helidty states in the IMF.) The 

irreducible representati011!11 of dimension 2t + I will be broken into one and two

dimensional representations on the transverse lattice. By applying standard 

methods of group theory ooe concl11des that the spin zero state transforms like AI. 

'~lie f.z = 0 component of the spin one state is in AI while the = ± I components 

form t~imensional E representations. In the spin two case the .II. z = 0 

component transforms like AI. The R.z = :U are in an IE representation and the 

" ±2 form symmetric <md antisymmetric combinations which transform accord-

m = () symmetric 
!z:= ~,:1:!1, :1:1.2 

antisymmetric 

Mtisymmetric 

symmetric 

Ill the continuum limit one sllould recover the lorenz deg<imeracy. Thus the 

absence oi. the Bl and 1\2 representations ill the two link meson sector meilM that 

these would have to come from the higher link me:110n oomber sector. This implielll 

that the two and four (etc.) sectors have to mix in the continuum limit. 

Note that one knows already from the study of the bare h<ldr011!11 m the link 

me:110nnumber two sector that the lowest even eigeNtate is light«, f« alii!, thM 

the lowest odd eigenstate. This leads to degenerate AI, B2 states split away from 

an E state, identifying the AI state with a spm zero hadron, 82 with an m ":1: 2 

symmetric component of a spin t~WC component lUid E IIIith m = :1:1. We get M 

embryonic degeneracy between a scalar Md a tensor piece of a Jlueball. If IE will 

also be related to the ten:110r then the vector Jlueball lieii~ way above the scalar lUid 

:110me components of the ten:110r. Even in the case that the IE will be related to a 

vector particle a hierarchy scalar-tensor and a heavier vector has formed. 

A similar classification cM be obtained for the link mellloo oomber four sector. 

at k = 0. These symmetry considerations serve also as a check of our computer 

eigenfunctions of the total Hamiltonian can be clusified according to Dll and that 

they contain only the allowed combinations ill the two Md four link meliiOI! oomber 

scalar. The dassification of all four body states is shown in Appendix C. 

In Fig. 12 we sllow the mass spectrum for two sets of parameterS~ 



The next question to be <M.:Idressed is the consistmcy of the link number 

expa!1$ion. It is checked by studying the tour body content of the low-lying 

elltcitatiom. ·These results are summarized in Fig. !2. It rums out that the 

expa!1$ion is rather satisfactory. Tile four body mixing in all possible cases (AI, B2 

i!llld E) is oot too large as to upset the expaMion and oot too small, thus allowing 

the two-body states to move on the tra~~Sverse lattice. (For the set o_f values (a) 

perturbation theory wollld give a .50% error while for the set of values (b) although 

g~i..B is very large, perturbation theory gives a correct reslllt within 10% becal.lse 

g~l..e/&I.E(!H, the expansion parameter, is small.) 

In the absence of a physical g!uebal! spectrum l.ll.lalitative coiiSiderations are 

~.~!'led to zone the relevi!lllt range of parameters. for a general set of parameters the 

Hamiltonian is oot positively definite. The rll!l.ll.lirement that all boon<! states have 

positiVIIII energii!IIS COIIStitutes a non-trivial C0!1Straillt. In particular, for sis = 0, a 

curve forms in the S, g~U~ plane. One defines g~ax to be the largest absolute 

value of l!~u~ allowed for a fixed value of 1!. !!;ax is an iocrei!Sing function of B. 

Its behavior is shown in Fig. B. in the allowed region of the plane one looks for 

those parameters which simulate on a rather large lattice the continuum limit. 

The A1-B2 degeneracy is broken once the filii Hami.ltorui!lll is diagonalized 

v&riation of all the parameters of the theory and is ooe of the qualitative results of 

01.1r i!lllalysis. One should point out that in the calculation of Kogut-Susskind a 

scalar-tensor degeneracy is obtained (or more precisely: in a cubic lattice a spin 

that the scalar is degeneratl! with the three dimensional piece of the tensor) and 

they &re both lighter than the v~~~~ctor (all of whose components fall in a single three 

dimensional representation on the cubic lattice i!llld thm remain dege111111ratel. As a 

matter of fact two interacting spin I particles with a conventional potential wollld 

be in an s-wave and thw; if the angular momentum interactions !i\re oot too large, 

0111111 indeed should hi! ve the vector lie above the seal ar and tensor. 

A naive guess could be that having a light link meson mass 1.1 2-wnich is 

ti!llltamomt to S near zero <strong longitudinal coopling}-~would pull together the 

bare hadron masses il!1d help them mix. However as was shown ill Sec. IU by 

reducing S to :rero 0111111 CiillllOt ge111111rate even one zero mass hadron (Uillike the 

situation ill the bare l.liJark-antil.ll.lilfk m~~~~Son sector). The groond stati!IIS of the 

vario!.IS representatiom become increi!Singly heavier beca.~.~se of the "welding 

energy" at each tra~~Sverse site. This a priori spacing of the low lying bare 

particles means that a oon-11egligible coopling should exist between two- il!1d fCM"· 

lowest lying even two-body state has a small mass relative to its separation from 

the foW" body states. Thm a large gNI..B falls ootside the allowed regioo. We are 

thm pushed to values of 13 aroond 0.2 ill'ld gNI..B:: -J.:S (the values ~.~!'led in Fig. 12) 

before a reasonable four-body mixing occurs. Even in this range some improvemmt 

the first four-body B2 state is rather large and it mixes much more into the second 

e"citl!lld two-body even state only for II:: 0.4.5. gNI..B can bl!ll made large enoogh to 

overcome the energy difference and reach a 20% mixt~~re. This reflects itself in 

the dispersion reiatiom for oon-zero tra~~Sverse momentum. 

Before studying the kT fo () case in detail we oote that the local box term hils 

a negative eigenvalue ilrld thus Ci!lllOOt serve to increase significantly the allowed 



des.cribed in the former section is diagonalized for oonzero transverse momentum" 

In Fig" 14 we plot the dispersion relation: the energy of the lladrons vs" their 

transverse momentum" The x and y trallSverse momentum components are equaL 

We first note that each of the lowest lying states involving two and four link 

meson mixing satisfies a physical acoostic dispersion" This allows an appropriate 

transverse motion for the hadroos. The next information available relates to the 

extent to which the hadrons in this approximation have continuum like properties" 

We can study several aspteets of this question; in the infinite momentum frame the 

dispersion relation is 

m+ 

where c stands for the velocity of light. in the continuum limit all states should 

have the same coefficient c and in addition the rotational invariance of the theory 

should be restored. In ow- case ooe compares c in the x or y direction to c in the 

4:f' direction (kx = In table I we list c for the lowest lying AI, l'l2 and one of 

the E states (for 1: 0 the E states are oo longer exactly degenerate)" The large 8 

:11\nd gNI.B region is again more continuum like" For the 45° direction c is the same 

for all representatiollS within 20%" for AI :11\nd 82 states the 45° rotation changes 

c by less than 10%" TheE states are not yet behaving in a satisfying manner" One 

state (shown in the table) has a very large value of c and the other (not shown) is 

essentially flat (they change roles when going from (lex' 0) to (0, Icy))" 

for smaller values of S the situation is somewhat different for l'l2 states, 

which hardly mix with the high energy four body state" As a final observation we 

note that for large !l both the AI ami 52 masses are much smaller than the value of 

the energy for large kr This is in the right direction as the l!dge of the Srilwin 

zone moves to infinity for small values of the lattice spacing" 

'IlL 1)!5CIJSSION 

The transverse lattice, infinite momentum frame version of QCD attempts to 

deal directly with the physical degrees of freedom of QCD, .maintaining and 

imposing the full internal symmetry structll!"e of the theory at the cost of the full 

l..orentz symmetry. The main thrust of this paper is in actually implementing this 

program" This was done by treating the longitudinal dynamics oonpertlll"ootively 

and perturbing in the transverse motion dynamics" 

The hadrOilS emerging from the analysis are composed of a superpooitiOI'I of 

bare hadrons. Each bare hadron is a weakly bound system of link m<e!IOI'IS (fl is 

rather large)" !..ink meson llllmber violation is large ~gh to allow a r~e 

transverse motion but is small ~gh to validate the expar~SiOI'I in tel'fllS of link 

meson number. 

approximation to the effective potential. All improvement of 0111" Wlderstanc:ling of 

the linear version is needed before it can be established as a faithflll effective 

theory at some hadronic distance scale. 

We wish to coodude with some remarks on the general cllaracteristia of the 

gauge particles which are color non--singlets but have triality zeroo One would like 

to know in what way will the glueball spectrum reflect these special flllcets of its 

In 0111" analysis the Lorentz pattern of the low lying excitlltiOilS seems to be 

explained by a valence gloon pictll!"eo It is however not deu that this descriptiOI'I 



between the dependent potentia.! and the independent degrees of freedom. 

However if there exists any gauge in which a va.!enc:e gluon picture serves to 

classify the gauge invariant physicaJ states, it is a usefll! concept. The more 

sedow problem is the strong coopling like bias inherent in oor ana.!ysis. In both the 

:nra.ightforward strong coupling ca.!cll!ations in the A 0 = 0 gauge7 and in oor more 

complicated app«"oach the vaJence strucrure is a strong coupling feat!ll"e. The 

up;msion in link meson number dictates (as was shown in Section V) the order of 

from the continuum limit. In 

this sense there exists a limit in which gloom Oink mesons) •e confined and attract 

with constant forces. in our scheme there was oo a.!gebraic characterization of the 

states ave that they are color singlets. One may wonder if these states form some 

degeneracy pattern:; Msociated with a Slll"'ll'iving global symmetry. Such a 

symmetry sliloi.ild be explicit in a string theory of hadrons. 

AI 

A2 

I!H 

82 

E 

APPENDIX A. SOME DETAILS OF THE SOLUTION Of' THE 
FOUR OODY OOUND STATE EQUATION 

states with a definite 0~ symmetry. 

chal"acter table of the group can be foond in standii!rd ~ on finite 

dimensiona.! groups.11 It is: 

identity c2 2C~ 2~" 

I 

-l -! 

-I -I 

-l -I 

2 -2 © 0 @ 

where the various group members oi. D~ generate the following transformations on 

~re whose sides are denoted (in order) by z. y, z,. w. 

~ ll:- y-w 

Clf(90o) lt)lrlll .,. JI'Z1&'ll! 

C11 (270°) )()>'rill ... 1&'li!)IZ 

c2'i lt)'l!W + 1&'li!YX 

cz•n lii)IZW .,. )'JCWZ 

cz"E liiYZW ... ZYXW 

X)IZW + xwzy 



-l 

The following trial functiom were comtructed as irreducible representatiom of the 

wariollS representations (the constraint x + y + z + w = 1 was imposed)" The matrix 

elements of the kinetic energy and the potential energy were calculated using Eq" 

(:U~) and the algebra was kept under control with the help of MACSYMA. 

APPENDIX Bo THE HAMil.. TON IAN FOR GENERAL TRANSVERSE MOMENTUM 

Fig. 2. A dictionary for the symbols is given below and an example was done ln Eqo 

«~.,). 

+ xyzw , Viol) 

For a= B:Z 

Po " X .. z- (y .. w) 

pI " x2 + z2 - (y2 + 

P2 "' x31 
+ z31 - (y

31 
+ w~ 

P31 " (x + z)yw- (y + wlu 

(A.2) 



8 = oonlocal oox 
CP "' coo!omb pro®ction 

CA " coo!omb annihilation 
ill)( iii 

elt "'e 
i.lclfiil 

elf "' e 

82 EI(UJ,i'~ ~2' + elfi!I(J~A,2'l.S21, 

c1 CPU234, 1'2') 

"' ............ /(.. 1'2') 

C~ exCIPU234, 2'!') 

Cf'<A2~,!'2? + elfCP(34!2,2'!') 

0 

. E1 D 

ollCP(A2~,1'2'} + llCf'(~U3,2'l') 

.., ,1'2l.EI(I23,1').S4:zo .. ntBI2~,2'Uu, 

1!1(123,1'l6~,~;zo .. exB<341,2')ii:n• 

8(234,2')6 U, + eli!B<4 !2, 1')6 J2' 

eyCP(34ll, 2'1') 

CP(U34, 2'1') 

eyCP(I234, 1'2') 

CPU4U, 1'2') 

CP(I234,l'2') + exCP(34A2,:Z'R'l 

r.!Cf'(i234,1'2'l+I'!CP(4l:Z3,2'l') 

..,1'2l.B( 123, 1')5 42'..,1'2l.B(:Z~,2'}6 u. 
D 

Bl 

+ e "!!I( I 4'1'2')1L 
l! ' """Zl' 

" 1!1(1,1'2'3'>62 ~,~, .. elfl!l(2,3'4'!')6 12, 

IBI MI+M:z+Ml+M4+CI2""C:zl""CJ4""C41 

B2 0 

c. 1!1(3~,3'4')611'~2' 

c2 B<3~,2'J'l521 , .s 14, 

c3 B<J~.~·a•l.Sd'aJ• 

c~ B<34,1 '2'l.S:w .s13, 

0 

a 

+ e "B<:z 3'4'!')1$ 
lil ' 12' 

" B<2,2'3'1.1'l6 11, ... elfi!I(I,4'P2'l.S 23, 

a 

MI+M:z+M3+M4+Cu...C:z3..C34..C4A 

B<U,I '2')1$ 33•6 44' 

B<A2,2'l'>6:w 64P 

8(!2,4'1')632' 

B<U,3'4').S31, 6~2' 



CPU2.!'2'3'11') 

e*'21 3'4'1'2') 
y' ' 

8 a le(JII,J'II') 111!' 1122' 

52 ie(U,I '2'} o33,6 ~~~· 

cl Mr•M2 .. MJ•M ... cl2 .. c2J .. c34 .. c41 

+lf..l!l;:u+LBu ..CA:n+CA41 

c 3 exCA(41,2'J')Il31,1124, 

c. 0 

D1 CA(23,2'3')1!H, 

o2 exe;CA(%1,4'1'}<122, 6:33, .. 
1!!1 e

1
1.fCA(41,4'!') ~2,1!33, 

flCA(23,2'J')Il 11, <~44, 

CP(:U,3'4'1'2') 

CP(21,P2'J'II') 

le(:n, J'4'l.S 12' 

B(:ZJ,l'l')l! 14' 1143' 

MI+M:z+MJ+Mii+CI2+C:z3+CJ4.,.CIII 

+UI:z:r•LBIII+CA;u..CA41 

0 

exCA(23,4'1')11 1315 42, 

el'CA(41,4'1')1l33, l'l;z:z• 

exCA(41,2'3'lll24, 1131, 

i2CA(23,2'3')1i 

i2CA(J4,4'l'l6 12,&23, 

.. 
exCP(l2,3'4'1'2') 

e "cPU:z 1'2':3'4'' 'J o I 

e1 ie(41,34l.S 21, 

ie(41,l'2') 023'0 :34' ., 
exCAUJ,4'1'lo n,o42, 

C~ M1+M:z+M3+M4 .. c 12 .. c 23 .. c 34+c41 

+IL.8:zJ+I.B41 +CA23..CA1H 

... 
el'CA(23,2'3') II II, 11411, 

E1 e;lfCA02,2'3') 

~ efJCA(41,4'1'lll:z2'1lJJ' 

e;cP<21,1'2'3'4') 

CP(U,3'4'1'2') 

0 

e:CA(41,2'3'lll 211,1l31, 

MI+M2+M3+M4+C12..C23"C34+Citll 

+LB23 .. L.s41.,.cA41 .,.cA23 

"' exe
1

CA(41,2'3?1l 3zoll24, 



Clf'\1:2,1'2'.3'4') • 

c
1 

CA(2J,2'3'lli11,o 44, 

" c2 el'CA(41,4'i'l633,622, 

c3 e,.C.'\{41,2'3')6 31 ,624, 

c., exe;CA(23,4'1')6 42,6 13, 

0 1 M 1 .. M2+M3 .. M4 +C lt'C:z:r•C34.,.c41 

+l..!l>:zJ+I..!l>4i +CA;n+CAIII 

£2 >"lCA(23,2'3')6U,o44, 

.. e;w'i"CA()4,4'1'l612' 

" Clf'U2,A'2'3'4') + exCPU1,3'4'1'2') 

I) 

I) 

" exeyCA(III,4'l'l6 22,o33, 

<I' 
exCA(23,4'1'l5112, 613, 

erCA<:n,2'3'lo114,111l' 

CA(41,2'3')11
31

,o24, 

+l.B2J+lB41+CA:zJ+CA41 

I'ICA(23,.3'4')6 111, 6ll'H!l!.I"1CA(41 ,2'3')153 I, 

ll 

~1..1!>(2,3'4'1')612' 

c1 eyflCA(41,11'1'll.i:z:z•633, 

c2 IJCA(23,2'3') 

c3 eyflCA(23,l'2'l 643,6 w 
c11 lfcA!41,1'1')6 23,-s.w 

01 0 

l.rCA(23,3'4') 

+ex lfCA(III,l'J')o .31' ~4, 

£1 MI+M2+MJ+M4+C12+C23+C34 

+C4l+I..Bit•l.B2J+I..BJ4 .. I..BII I 

•CAU 2)..CA(23)+CA(34)+CA(4l) 

2 
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E:z 

/2cPU2,1'2'3'4')+/:klf'(21,4'1'1'31'l 

5;w•lfi.B<2,2'3'4')6 II, 

"'"-'"'"'·'·"·yjf> 12'644' 

IJCA(41,J'4'l6
21

,1'1 32, 

22'~)· 
e)l;flCA(231,3'4') !2' 

\ 4,-.eylfCA(III,J'II'll'l 

M I+M2+Ml+MI.I +C u+C231..C34 

+C41+l.!B u+l.!B23 +l.!B34 +Uil; l 



APPENDIX C. DECOMPOSITION OF HADRON$, AT ZERO TRANSVERSE 
MOMENTUM, IN TERMS OF BARE HADRON SYMMETRIES 

One am dusify the hadrom with 1<.r = 0 according to the symmetry D4• 

However only certain configurations of bare hadron$ we i!.llowed in a hadron of a 

l!lp(lleWing in Fig. 2. 

Ewen {a(++)}, 

d( ..... , }, 82 

AI {b(+-) }, A2 {b(+-) }, EW {cl++++) }, EC2>{ cl++++)} 

AI {cl-)}, A2 {cl->}, !)(.,...), cl-)}, 

Bl{b(++), cl-)} 

Even , AI {d(+-), e(+-) }, A2 {d(+-), e(+-)}, 

Bl { !)( .... ), 82 {!)( .... ), d(...,}}, EW 

E(2){cl->} 

~: ~~}.AnJ(~:::n(· (~::::~)1· 
81 H e2 ) • ( ~:::n l . B2 i e2 ) • ( ~::j H ' 

This usumes the following sign c:onwentiom for the E stliltll.!llll EUM1:23-4) " 

. E(2)(2nU "-E(2M1112l) and EC2Ml2llf)" -EUM2l41)" EU)(<%123). 

AI 

&1. 

E 

Tlilllie 1. The velocity of light of varlooslladrons. 

The 11nit~ of Care determined by <.,/·cN)/(u2): 1. 

II "0.4,; "~;~u~"o 

c~< :~< 
l! y 

ck ~t ,o 
x' 

lU u' 
,,7 177 

1), vo 
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FIGURE CAPTIONS 

The masses of two body even (2E) (marked (:d) and odd (20) 

(marked (X)) bare lladrons as a function of tile radial excitation 

index, n. Plots Me for S "0.1. 

Two amd foor body lattice confil;uratlOO$. 

Possible color structure of tile 0 2 foor body state. 

Ground state energies of two and foor body bare lladrons is 

plotted as a function of a 0 

I'Jare hadron mass spectrum ilor a:: 0.1. 

The vertices generated by the coolomb terms in tile OJrrent

current interaction. Figs. (a) and (b) Me tile coulomb 

scattering terms. Figs. (c) and (d) represent coolomb produc

tion and annihilation respectively. 

Scattering {Fig. (a)) and production (Fii;. (b)} terms resu! ting 

from tile transverse magnetic interaction. 

The process denoted by BU, I '2'3') 

The noniocd box scattering term. 

Coulomb annihilation terms. 

Coulomb production terms. 
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